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The investigation of periodic solutions of the equations of motion of a 
viscous fluid is of much interest. Such solutions of the Oseen approxi- 
mation have been studied in the work of Lin [ 6 1 . 

The differential equation 

was first introduced by Burgers as a simple model for the equations of 
motion of a viscous fluid. In [ 1 1 some particular solutions of this 
equation are found. In [ 2.3 1 the general properties of Equation (0.1) 
are investigated, and it is shown that with the help of a certain sub- 
stitution it can be reduced to the equation of heat conduction; also, 
the proof is given for the existence and uniqueness of the solution of 
the problem with given initial conditions. 

Below we examine the solutions of the nonlinear partial differential 
equation (O.l), periodic with respect to time (period T). 

1. Equation (0.1) may be put in the form 

The problem is posed in the following form: to find a periodic solu- 
tion of Equation (1.1) in the upper half-plane y > 0, when the values of 
the function tu are given on the axis y = 0 in the form of a periodic 
function of time, and the value of 10 at infinity is equal to some non- 
positive constant 

We shall assume that +(t) is continuous and can be developed in a 
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Fourier series with coefficients of the order 

ql (t) = q- -+ ; (Ul; c,os ?it + 
&=I 

With the help of the substitution 

l/k’(r > 2) 

I/h. sin IG) (1.3) 

(1.4) 

Equation (1.1) is reduced to the equation of heat conduction 

‘thus, we have to 
ion, satisfying the 

i)u a% 
-oT = &c (1.5) 

look for a solution of the equation of heat conduct- 
condition 

- 2 $ (0, t) == u (0, t) 4 (t) (1.6) 

such that the function m(y, t) defined by (1.4) is periodic with period 
217. We require for definiteness that the function u(y, t) for all y > 0 
be essentially positive. 

From the condition of periodicity of the function w(y, t), and making 
use of the relations (1.4) and (1.51, we obtain for the function 
the functional relation (5 is a real constant) 

rz (y, t + an) = exp (-2x5) U (y, t) 

The solution of the functional relation (1.7) has the form [4 

u (YY 9 = exP (-54 w (Y, 4 

Here o(y, t) is a periodic function of time with period 2~. 

4y, t) 

(1.7) 

1 

(l-8) 

2. We write out the solution of the heat-conduction equation (1.5) in 

the form of (1.8) 

u (Y, 0 = exp (- LtI 0 (9, 5) + 

-f- 5 exp Pk (5) ?i iA k cos (At - ak (5) y) + &k sin (& - wk (5) ?&) ] (2.1) 
k=l 

Pk (5) = - 
k vw-F -i-J 

-- ok (5) = 2 
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From Equations (2.1) and (2.2) it is evident that the quantities 
A,(k = 0, 1, 2, . . .) and Bk(k = 1, 2, . . .) are the coefficients of a 
Fourier-series development of the function ~(0, t) = ~(0, t) exp ( 5 t). 
We now introduce the quantities ak(k = 0, 1, 2, . ..) and b,(k = 1, 2, 

1 . . . ) satisfying the equalities 

a0 = BOY Ak = - okah. + rkbk, BI, = - rka]s - Gkbk (k=l, z,...) (2.3) 

k2 

2(k2+L2) 11/k2+C2+ 51 
zk= ‘l/k2+CF+C “’ 

i 2 (k2 + C2) (2.4) 

Differentiating (2.1) with respect to y, with the notation of (2.2) 
and (2.4), we obtain 

au (Yv t) -= 
aY 

exp (- ct) {‘y $ i exp pk (5) y [ak c”s ckt - Ok (5) y) f 

li=l 

+ bk. SiIl (kt - Ok (5) ?j)]) (2.5) 

Equations (2.5) and (2.2) show that 
1, 2, . ..I are Fourier coefficients of 

It is now possible to write out the 
w(y, t) in an obvious form, making use 
(2.5): 

co 

alk(k = 0, 1, 2, . ..) and b,(k = 
the function d ~(0, t)/d’y. 

expression for the function 
of Equations (1.4), (2.1), and 

(2.6) 

- :L + 2 expPk(t) y [ k a cos (kt - ok (g) y) + b, sin (kt - ok (5) Y)] 

w (y, t) = - 2 k=l 
-- 

f f 5 exp Pk (t) Y iAk CoS P - ak (5) Y) + Bk sin &--ok (5) Y)] 

k=l 

We now show, taking off from Equation (2.6), that condition (1.2) at 
infinity can be satisfied. Letting y go to infinity, we have 

lim w (y, t) = - 2 lim a In fap’ %) (2.7) 
ll-fw Y-ta, 

where 

p/5t~~v5Y- arcctg 1/t (‘40 / Bo)} for 5>0 

_ 2alnf(Y, 5) = .--2B,/(Ao+ Boy) for m<=O 
8Y 

(2.8) 
-A,,1/--+BBocth f--t;y 

-xv--5 
Bat 41/--cth1/- Q/ 

for C<O 

It is evident that Expression (2.8) gives a stationary solution of 
Equation (1.1) or, in other words, the solution w of the equation 

(2.9) 
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betting y go to infinity, in (2.8) we see that for 4 > 0 a limit for 
w(y, t) does not exist, and for [ G 0 this limit is equal to 

20 m=- 21/-c (2.10) 

lbus, for every given w _‘< 0 the quantity 5 appearing in the solution 
(2.6) is determined from the following formula: 

5 = - $2(>,? (2.11; 

It remains to determine the constants ok and bk. bating the Fourier 
coefficients of the left- and right-hand sides of Expression (1.6) 
(making use here of Equations (2.1) and (2.5) for y = O), we obtain, 
under the assumption that A,, is arbitrary, an infinite system of linear 
equations for ak(k = 0, 1, 2, . . . ) and bk(k = 1, 2, . . . ) (from the form 
of w(y, t) in (2.6) it is evident that all these constants are deter- 
mined exactly, up to the multiplier l/A,) 

00 

(k = 1, 2, 3, . . .) (2.12) 

a, f tpb,) - $ f&v, (k = 1, 2, 3, . . .) (2.13) 

where the following notation has been introduced: 

(n< 4 

(n 3) 

(n < 4 

(n>, 4 

(n < 4 
fn> k) 

@ < k) 
(n 2 4 

(2.14) 

l’ben, when the constants a*, b,(k = 1, 2, . . .) have been found, the 
constant a0 is determined from the formula 

~O=_L?$L- ; 2 {ak [-- akuk - rkvkl + bk bkuk - okvkl} (2.15) 
k=l 

‘ihe infinite system of linear equations, (2.12) to (2.13), will be 
completely regular (5 1 if, for all k = 1, 2, . . . 
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(2.16) 

}<I - 9 w<e<q 
n=1 n=1 

From Equation (2.4) it is easy to see that for all k the inequality 

1 rh. 1 + ( ok / = zg + ‘J/i -< 1/2 i k (2.17) 

holds. In view of (2.14) and (2.17), the condition (2.17) is satisfied 
if the series 

(2.18) 
k=l 

converge, so that the inequality 

u+v 

is satisfied. 

We shall assume that condition 

k=l 

\<I/2 (1 - 0) (2.19) 

(2.19) is satisfied for the system of 
equations (2.12) to (2.13). Then the system (2.12) to (2.13) will be 
completely regular, and in order that it have a unique bounded solution 
[ 5 1 (the principal solution, i.e. the solution found by the method of 
successive approximations for initial conditions which are zero or arbi- 
trary but bounded in total) it is sufficient that the quantities 
-A0Uk/4, -A&/4 (k=-1, 2, 3, . ..) be bounded. Wit in view of Equation 
(1.3) these quantities will be Fourier coefficients of the function 
-A,#(t)/4, from which their boundedness follows. 

‘Ihen with the fulfillment of condition (2.19) it is possible to find 
uniquely from the system (2.12) to (2.13) the system of quantities ok, 
bk which are bounded by a certain constant I(. It remains to show that 
these quantities can be Fourier coefficients of some function and to 
show under what conditions the function u(y, t) for all y > 0 and t > 0 
remains positive. 

3. We shall solve the system of equations (2.12) to (2.13) by the 
method of successive approximations. We note that the mth approximation 

(I), bk( “) is found by putting the m - lth approximation in the right- 
,“tnd side of Equations (2.12) to (2.13): 

&%k 
Cm) = fj (aY)a$w + pt$b(nm-l)) _ iAoUk 

(k=1,2,...) (3.1) 
n=1 

(k = 1,2, . . .) (3.2) 

For the zeroth approximation we take 
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ak 
(0) = 0’ = 0 (k = l,“, . ..) (3.3) 

For the first approximation we find from Equations (3.11, (3.2) and 

(3.3) 
(11 _ 

ok - - ;A,uk, bf’ = - f A,Vk (k = 1, 2, . ..) (3.4) 

We shall consider that the Fourier coefficients of the function t,H_lct> 
satisfy the relations (with e and f constant) 

jU,I\<e/nr, /Vn/<ffar 0. >, 2) (3.5) 

Making use of Equations (2.41, (2.14), (3.1) to (3.51, it may be 
shown that if the condition 

(1 + 2’) (E + F) + (2 + 2’) (U + v) < 2(,-e 2 +., F=f 5s) (3.6) 
n-21 nc:_1 

is fulfilled, then the coefficients a, and b, satisfy the inequalities 

and therefore can be Fourier coefficients of some function. 

4. We shall now show under what conditions the function u(y, t) will 
be positive for all non-negative values of y and t. From Equations (2.1) 
and (2.2) it is evident that u(y, t) > 0, if for all y > 0 

f(Y,c)> i [~-&ij+~&~l (4.1) 
k =I 

making use of (2.2) it is possible to convince oneself that for 4 > 0 
the inequality (4.1) cannot be fulfilled, that for < = 0 it holds if 

A, > 0, B, > 0 
7; 

(4.2) 

and for t < 0 it holds if A, > 0 and, either B. > 0 and (4.2) is satis- 
fied, or the inequalities 

hold. 

It is clear that if Baz 0, then since ~(0, t) > 0 a given function 
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G(t) must be subject to the condition 
21: 

1 
I# (0 u (0, q dt < 0 (4.4) 

0 

Thus, in this case a periodic function $(t) must be either negative 
or change sign in the interval 0 Q t G 217 at least once in such a way 
that the inequality (4.4) is fulfilled. 

It is easy to see that if the term cd w/G’y is added to the left-hand 
side of Equation (1.1) (c is an arbitrary constant), then the solution 
w + c of this equation with the conditions (1.2), with W-G - c, has the 
form of (2.6), where < = - (c + wJ2/4, and rl, in (2.12) to (2.15) must 
be changed to CJO + 2c. 

5. Let us now investigate the inverse problem: to find the solution 
w(y, t) of Equation (1.1) when the function 

is given on 0 < t < 2n, where u(y, t) satisfies the heat-conduction 
equation (1.5), and, in addition, the value of the function w(y, t) at 
infinity is given. Relations (5.1) and (1.8) show that fit) =ao(O,t)/dy, 
and the constant 5 is determined from Equation (2.11). 

From Equations (1.7) and (5.1) it is clear that the function #4t) is 
periodic with period 2~. Let us develop it in a Fourier series 

cP(t)=?+ yj( al, cos At + bk sin kt) (5.2) 

Making use of Equations (2.3) to (2.5), (2.1) and (1.4), we find 
w(y, t), the solution of Equation (1.1). Here u(y, t) conserves its sign 
if 5 4 0. For all y > 0 and t > 0, u(y, t > 0 if the arbitrary constant 
A, > 0 and either u0 = B,, 2 0, whereupon inequality (4.2) holds, or for 
4 < 0 condition (4.3) is satisfied. For all y > 0 and t 2 0, u(y, t) < 0 
if A, < 0 and either aa = B, < 0, whereupon 

k=l 

or a,, > 0 and 

(5.3) 

(5.4) 

The value $_(t) of the function w(y, t) on the axis y = 0 is given by 
Equation (1.2). The coefficients of the expansion of t,btct> in a Fourier 
series (1.3) can be found by equating Fourier coefficients of the left- 
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and right-hand sides of Equation (1.6). Here, as was indicated above, we 
consider the constant A, to be arbitrary. For finding the quantities U,, 
Vk (k = 0, 1, 2, . ..) we obtain the infinite system of linear equations 

(k = 0, 1,2,. . .) (5.5) 

Vk = 5 (@,k’& + VE’V,,) - 2 b,,. (k = 1, 2, . .) (5.6) 
T%=lj 

Here 

h(k) = 
%’ @k+n’k+n - rk+$k+, + 5k__nak-_n - Zk-_nbk__nl 

, tn Ck) (5,7) 
n 

i AL1 [G k+n’k+n - Tk+$k+, + 5,-kan-k - ‘n-kb,,-kl (n >, k) 

(k) 
pn .= 

1 

A;’ [rk+#k+n f Ok+nbk+n - rk__nak__n - ~k--nbk_nj b < 4 

A;’ iZk+nak+n + ‘k+nbk+, + Tn-kan-k + 3n-kb,-kl (n >, h-1 

ELkj _ 1 A;1 [‘n+k%+k + %+kbn+k + Tk--n”k--n + ‘k--nbk--nl 

- 1 A;’ &+k’,+k + 5n+kb,+k - T,_ka,-k - 5n-kbn-kl 

tn < ‘) 

(n > k) 

$k’ \ A;1 [-5n+kan+k + ‘n+kbn+k + 6,p-_nu~__n - ~k_nbk-nl (n < k) 

- \ A;’ [-s,,+kan+k + $+,&+k + 6,-&,_k - ~,-kb,_kl tn > k) 

Analogously to this, as was shown in Section 2, it can be shown that 

the system (515) to 

converge, whereupon 

(5.6) will be completely regular if the series 

Z1$$=C , ; I byI - D 

l/k 

(5.8) 

k=l 

the inequality 

c+D<*(l-e) (O<e<l) (5.9) 

is fulfilled. 

‘lhe quantities - 4a& ’ and - 4b,& ‘, being Fourier coefficients of 
some function, are bounded. It follows that the system (5.5) to (5.6) 
determines a unique bounded solution (principal solution). Analogously 
to this, as was done in Section 3, it is possible to show by solving the 
system of equations (5.5) to (5.6) by the method of successive approxi- 
mations that the quantities U,,, V, can be Fourier coefficients of some 
function. For this we assume that 

If the condition 

IPnle) (r&2, n = 1, 2, . .) (5.10) 

(1 + 2’) (H + C) + (2 + 2’) (A + B:, < / -4-J I i 2 (5.11) 
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is fulfilled, where 

A = i l&II, B= $ I&l, H=h;-$-, 
?I=1 *=I ?I=1 

we obtain estimates for the coefficients of the series 
of the function ~,Nct) 

.G=g-$ 
n=1 

development (1.3) 

14 + (1 + 27 I u. II [(I + 27 (H + G) + (2 + 27 (A + B)I + (5.42) 
I & I - 2 [(I + 2’) (H -I- G) + (2 + 2’) (-4 + B)] 

+ (1 + 2’1 I UO I 

) 

[h A- 671 
2 nr 

6. From Equations (3.7) and (5.12) it is clear that when conditions 
(3.6) and (5.11) are fulfilled the solution ok, bk and uk, vk of the in- 
finite system of equations can be found. However, the majorant which we 
have investigated is rough. For certain specific problems it is possible 

Fig. 1. 

to find much more accurate esti- 
mates. From this it is clear 
that in general it is possible 
to find the corresponding solu- 
tions, which need not neces- 
sarily satisfy conditions (3.6) 
and (5.11). 

From Equations (l.l), (1.4) 
and (1.51, it is easy to see 
that condition (3.5), which is 
here assumed to be satisfied 
for the Fourier coefficients of 
r,Ht>, indicates continuity of 
all derivatives of the function 
w(y, t) appearing in Equation 
(1.1) and, consequently, of the 
continuity of the function 

u(y, t) and its derivatives up to the third, inclusive. 

J3y way of illustration let us quote the results of some calculations. 

Figure 1 shows the curves for the relation to = w(y) for the case where 

‘Ic, (t) = -0.6 + 0.4sint (6.1) 

In Fig. 1 the curves 1 to 8 correspond to the values t = 0, v/4, v/2, 
7~/8, v, 5n/4, 3n/2, 7~/4. lh e constant which determines the value 
of w at infinity is w_ = - 2, so that < = - 1 in accordance with (2.11). 
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Note that in this example &/c?y < 0 
derivative’d*w/dy* changes sign at y 

(l.l), (2.6) and (6.1), though 
this is hardly noticeable. 

In Fig. 2 are given the curves 
for the relation w = w(y), when 

(6.2) 

0,(t <LX i’ 2 

‘F(t)=jn--t +<t+ 

for all values of t when y > 0; the 
= 0 in accordance with Equations 

Two solutions (2.6) for w(y) 
are drawn in Fig. 2 for values of 
the constant A, equal to 17.3307 
and -17.3307. The curves corre- 

spond to pairs of values of t, namely: 

Fig. 2. 

1 (0, n), 2 (l/3, 4n/3), 3 (n/2, 3n /2), 4 (2v 13, 5=/3), 
5 (a, 0), 6 (4~13, n/3), 7 (3~,‘2, v/2), 8 (5nf3, 2n13) 

corresponding to the first and second values of A,. 

-08 -0.6 -0.4 -&? w 

Fig. 3. 

function u(y, t) in (1.4) will be a 

In Fig. 3 the relation w = 
w(y) is given for the case 

(6.3) 

1 t 
(O,(l< ax) 

Here A, = 17.3307; the curves 
correspond to the values L = 0, 
n/3, 2n/3, R, 4n /3, 5n /3. 

Note that in the last two 
cases w, = 0, so that 5 = 0, in 
accordance with (2.11), and the 

periodic solution of Equation (1.5). 
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